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Markov-Modulated Hawkes Processes for

Sporadic and Bursty Social Interactions

Modeling event dynamics is central to many disciplines. Patterns
in observed social interaction events can be commonly modeled using
point processes. Such social interaction event data often exhibits self-
exciting, heterogeneous and sporadic trends, which is challenging for
conventional models. It is reasonable to assume that there exists a
hidden state process that drives different event dynamics at different
states. In this paper, we propose a Markov Modulated Hawkes Pro-
cess (MMHP) model for learning such a mixture of social interaction
event dynamics and develop corresponding inference algorithms. Nu-
merical experiments using synthetic data demonstrate that MMHP
with the proposed estimation algorithms consistently recover the true
hidden state process in simulations, while email data from a large
university and data from an animal behavior study show that the
procedure captures distinct event dynamics that reveal interesting
social structures in the real data.

1. Introduction. Understanding social interaction dynamics, such as
event occurrences with a temporally heterogeneous intensity, has become an
important topic in many research disciplines. For example, user behaviors
and interactions on social networking platforms and online service providers
are of great importance for resource allocation and user experience improve-
ment. Many real-world social interaction event dynamics are sporadic in na-
ture, rife with irregular event-intense intervals, and heterogeneous in event
densities. Study shows that group-living animals dynamically shift their in-
teraction behavior in order to stabilize the social system (Williamson et al.,
2017), while the timing of many human actions demonstrates a bursty and
heavy-tailed pattern (Barabasi, 2005). It is easy to explain the bursty nature
of many event dynamics through the example of an email network: during
active hours, one individual sends an initial email to engage another indi-
vidual, which acts as a trigger that leads to a stream of interactions that
follows. These active hours will eventually give way to an inactive inters-
ession, during which email arrivals have no trigger effects. Such sporadic
event dynamics with stochastic inactive-active transitions can be found in
many real-world soical interactions, whose irregularity poses challenges for
modeling and understanding of the underlying data generating mechanisms.
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One example of dynamics of this form is the times of emails between users
in a large university, as first collected and analysed by Kossinets and Watts
(2006). Figure 1 illustrates emails from one user to another in this network
over one academic semester (122 days). The data shows distinct periods of
activity, such as at the start and end of this time period, along with periods
with less frequent interactions.

Common practices in modeling social interaction event dynamics are
generally grouped into two categories. The first type computes aggregated
counts of events that are captured in fixed-length time intervals, and then
applies time series models for count data (e.g., Blei and Lafferty 2006). The
second type directly models continuous-time event occurrences via condi-
tional intensity functions (e.g., Weiss et al. 2012). The first approach requires
unnecessary aggregation of the data, which inevitably leads to information
loss. In most cases, the time series models make assumptions about the true
data generating process that are hard to validate. Another common challenge
with the first approach is choosing the “right” length of time intervals that
strikes a balance between count sparsity and information loss, as demon-
strated further in Supplement S1.1. This can be especially challenging when
arrivals are both sporadic and bursty. The continuous-time approach is a
more direct modeling of event dynamics. In recent literature, efforts along

Fig 1: Observed social interactions consisting of emails sent between a pair
of users in a large university, as described in Kossinets and Watts (2006).
(a) describes event arrival times over one semester, with a kernel density
estimate for a small bandwidth overlaid, while (b) shows the distribution
of interevent waiting times. At certain times events arrive at a very high
density. The kernel density (red line) is added to help illustrate these events.
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this line often treat the observed event arrival times as (heterogeneous) point
processes and model their intensity functions with incorporated excitatory
triggers (Simma and Jordan, 2010; Zhao et al., 2015), event history (Perry
and Wolfe, 2013), and/or latent Markov processes (Scott and Smyth, 2003).

Poisson processes are the most widely used models for social interaction
event arrival times. These models assume a constant event intensity over
time and independent event arrivals. For a Poisson process with rate λ, the
waiting time between events follows an exponential distribution with mean
1/λ. However, in practice, the timing of events often follows non-Poisson pat-
terns (Barabasi, 2005). Figure 1-(b) displays the distribution of interevent
waiting times for the social interactions between a pair of email users shown
in Figure 1-(a). There are departures from an exponential distribution, with
the rate being the maximum likelihood estimate. Most notable are depar-
tures at the two ends of the distribution that correspond to bursty arrivals
and a heavy-tail in waiting times, which have been noted in the literature
(Barabasi, 2005).

The Hawkes process (Hawkes, 1971), a self-exciting process, has been
proposed as an alternative to address non-Poisson bursts in event dynamics.
In a Hawkes process, at the arrival of an event, the event occurrence intensity
is elevated. This boost in event rate is sustained for a short period of time
that follows. Hawkes processes have been shown to capture bursty patterns
in human activities reasonably well (Linderman and Adams, 2014; Wang
et al., 2016), but are inadequate to address the existence of extended ‘silent
period’ and isolated events. Under a Hawkes process, once an event has
occurred, it will always induce an incentive for future events to occur in a
short period of time immediately following the “triggering” event. However,
in reality, long intervals of inactivity or low activity rate between bursts
of events are ubiquitous. A more flexible model is needed to address the
heavy-tailed distribution of interevent waiting times.

One model that addresses such heterogeneity in interevent waiting times
is the Markov Modulated Poisson Process (MMPP) (Fischer and Meier-
Hellstern, 1993), which is a doubly stochastic Poisson process with its arrival
rate modulated by an underlying Markov process. It assumes that the rate
of event arrivals depends on a latent state variable. Conditioning on a given
latent state, the arrival of events follows a homogeneous Poisson process. We
fit MMPP to data on interactions from the same pair of directed emails in
Figure 1, see Figure 2-(a). The inferred latent MMPP state (blue line) fails to
capture the different event dynamics patterns. In other words, the observed
sporadic event dynamics cannot be explained simply by different rates of
incidents. Rather, they suggest different levels of temporal dependence.
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Fig 2: Conventional models applied to the same set of interaction times
from a pair of email users as in Figure 1. (a) Interactions with inferred
latent states (black crosses) by Markov Modulated Poisson Process (MMPP)
(Fischer and Meier-Hellstern, 1993) with latent trajectory (blue line) and
one-standard-error band (blue shade) bounded to be between 0 and 1.(b)
The estimated latent state using Markov Modulated Hawkes Process with
stepwise decay (MMHPSD) (Wang et al., 2012). Overlaid is a KDE with
small bandwidth (red line). Both MMPP and MMHPSD failed to detect
segments of different types of social interactions, as further demonstrated in
Supplement S1.2.

In this paper, we address the modeling of sporadic interevent waiting
times, commonly found in real-world social interaction event dynamics.
Combining Markov modulation and the Hawkes process, we propose a Markov
Modulated Hawkes Process (MMHP) model and develop corresponding in-
ference algorithms. As shown in Figure 2, the interevent time density from
real data includes both short “bursty periods” and extented “silent periods”
with isolated events. Our model, on one hand, will address the limitation
of the Hawkes process in capturing “silent periods” and isolated events. On
the other hand, it will extend the flexibility of the MMPP to allow “bursty
periods”.

Wang et al. (2012) considered a related strategy, where a Hawkes process
with step-wise decay was introduced into the MMPP framework (MMH-
PSD) to model variation in seismicity during earthquake sequences. From a
modeling perspective, MMHPSD assumes that each event occurrence creates
a constant influence on the intensity function that accumulates with that
of other events. This influence is reduced to a lower constant by each event
that occurs afterwards. This assumption is not flexible enough to describe
certain social event arrivals as it ignores time-decaying effects of previous
events as time elapses. The estimation of MMHPSD was implemented using
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the EM algorithm (Dempster et al., 1977), where the M-step computation
highly relies on the piece-wise constant assumption. It is therefore difficult
to generalize this procedure to the more widely-used exponential kernel for
Hawkes processes. The blue line in Figure 2-(b) shows the fitted latent state
using the MMHPSD model, where we can see that the latent process is ‘ac-
tivated’ by nearly every event occurrence, classifying several events in the
active state. When there is no event, the state immediately drops to state
0. This is the drawback in using a piece-wise constant intensity function
that renders the inference dependent only on local patterns (event versus
no events). It fails to detect a stable global latent process that represents a
mixture of event dynamics.

Our proposed model considers the Hawkes process with exponential de-
cay, the original more general definition of the Hawkes process. This allows
us to efficiently and explicitly model the extent of influence that past events
have on the arrival intensity of future events. We derive a novel inference
algorithm to solve the computational challenge, providing a close mean-field
variational approximation (Blei et al., 2017) of the original likelihood. This
novel approximation allows the model inference to be carried out using tech-
niques from the forward-backward algorithm (Rabiner, 1989) and the Viterbi
algorithm (Rabiner, 1989), which can be easily generalized to estimate other
related models, e.g., MMPP and MMHP with stepwise decay or other kernel
functions. This inference procedure can be incorporated into posterior infer-
ence under a Bayesian framework that allows us to quantify uncertainty in
the model estimates, especially for the latent state process. We evaluate the
performance of MMHP using experiments on synthetic data, real email data
from Kossinets and Watts (2006) and mice interaction data from Williamson
et al. (2016). MMHP is shown to have excellent model estimation and reli-
able recovery of the latent states (active versus inactive) for synthetic event
dynamics with ground truth. MMHP is also better able to capture the dy-
namics underlying email interactions than previous models. When applied
to interaction dynamics among cohorts of male mice, MMHP identifies two
types of fighting activity states with different social structures.

2. Markov Modulated Hawkes Processes. We first introduce the
proposed MMHP model for sporadic event dynamics given observed event
arrival times. We start with the notation that is necessary for our discussion.
Then, we lay down the background on point processes in general with a focus
on the Hawkes process. Finally, we introduce the proposed MMHP, a latent
variable model with Hawkes process modulated by a Markov process.
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Notation for event arrival time data. We consider event arrival time data
that consists of all event history up to a final-observation time T : H(T ) =
{tm}Mm=0, where t0 = 0, tM = T , and M is the total number of events. The
sequence of interevent waiting times is denoted by {∆tm := tm− tm−1}Mm=1,
which is equivalent to the event time H(T ).

Background on point process models. An equivalent representation of a
point process H(T ) = {tm}Mm=0 is via a counting process. Let N(t) be a
right-continuous point process that records the number of events observed
during the interval [0, t]. The conditional intensity function given the history
up to time t, H(t), is

λ(t|H(t)) = lim
∆t→0

Pr(N(t+ ∆t)−N(t−) = 1|H(t))

∆t
.

The likelihood function for a sequence of events up to time T , H(T ) = {t1 <
... < tM}, is then

(2.1)
M∏
m=1

λ(tm|H(tm)) exp
{
−
∫ T

0
λ(u|H(u))du

}
.

The Hawkes process (Hawkes, 1971) is a self-exciting process that can
explain bursty patterns in event dynamics. For a univariate model with the
widely used exponential kernel 1, the intensity function is defined as

(2.2) λ(t) = λ1 +

∫ t

0
αe−β(t−s)dNs = λ1 +

∑
tm<t

αe−β(t−tm),

where λ1 > 0 specifies the baseline intensity, α > 0 calibrates the instan-
taneous boost to the event intensity at each arrival of an event, and β > 0
controls the decay of past events’ influence over time. Hawkes processes have
successfully been used to model dynamics in fields such as finance (Hawkes,
2018) and Neuroscience (Linderman and Adams, 2014).

Modulation by a latent Markov process. In Fischer and Meier-Hellstern
(1993), the original Poisson process was extended to be modulated by a la-
tent continuous-time Markov chain (CTMC), primarily to address the com-
monly non-Poisson pattern where the event dynamics alternate between long
waiting times and intervals of more intensive events. More specifically, this

1Other kernel functions such as a powerlaw kernel have also been used in applications
in seismology and finance.
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Markov Modulated Poisson Process (MMPP) model is a doubly stochastic
Poisson process whose arrival rate is given by λZ(t). Z(t) is an irreducible
Markov process with R-states that is independent of the arrival process.
When the Markov process Z(t) is in state r (r ∈ {1, ..., R}), arrivals occur
according to a Poisson process of rate λr. In this paper, we will consider a
two-state Z(t) that takes values 0 or 1. All the following discussion can be
generalized to an R-state Z(t).

MMPP assumes a constant event intensity conditioning on the latent state
Z(t). For sporadic event dynamics with bursts, isolated incidents and long
waiting times, we propose to use Hawkes process to model a self-exciting
λ1(t) instead of using a constant rate λ1, when the underlying Markov pro-
cess is in the active state (Z(t) = 1). This Hawkes process λ1(t) considers
the whole event history up to current time t, i.e., H(t). When Z(t) = 0, the
point process follows homogeneous Poisson process with rate λ0. Modulating
the intensity function using a latent two-state Markov process Z(t) allows us
to extract segments with heterogeneous event dynamics. Z(t) is described by
an initial probability vector δ := (1− δ0, δ0), and an infinitesimal generator
matrix Q, where

Q =

[
q1,1 q1,0

q0,1 q0,0

]
=

[
−q1 q1

q0 −q0

]
.

For each t ≥ 0, there is a probability transition matrix, denoted as P(t) :=
[Pij(t)]i,j∈{0,1}. Each entry Pij(t) is defined as the probability that the chain
will be in state j at time u + t (t > 0) given the chain is in state i at time
u, i.e. for each u ≥ 0,

Pij(t) = P (Z(u+ t) = j|Z(u) = i).

The likelihood of the full trajectory of the hidden state {Z(t), t ≤ T} :=
Z(T ) can be written in terms of the following sufficient statistics: initial
state Z(0), the number of jumps K and the successive transition time points
{u1, ..., uK}, given parameters δ, q1 and q0. Further, denote sk as the state
of Z(t) during [uk−1, uk), and ∆uk = uk−uk−1, as shown in Figure 3. Then
the likelihood function is written as

P (Z(T )|δ,Q) = δ
I{Z(0)=0}
0 (1−δ0)I{Z(0)=1}[

K∏
k=1

qske
−qsk∆uk

qsk,sk+1

qsk
]e−qsK+1

∆uK+1 .

Let Θ denote the entire set of parameters, i.e., {λ0, λ1, α, β, δ, q1, q0}. The
complete-data likelihood for Θ, under MMHP, is then

P (H(T ),Z(T )|Θ) = P (Z(T )|Θ)× P (H(T )|Θ,Z(T )),(2.3)
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Event time N(t)

Markov process Z(t)

t0 = 0 t1 t2 t3 t4 tm tm+1 tm+2 tm+3 tM−1 tM = T

u0 = 0 u1 u2 uk−1 uk uK+1 = T

sk = 1, ∆uk = uk − uk−1

Fig 3: An illustration of the MMHP model.

where P (Z(T )|Θ) is for the latent Markov process, which is not dependent
on the observation H(T ). P (H(T )|Θ,Z(T )) is for observed event data con-
ditioning on the latent process. More specifically,

P (H(T )|Θ,Z(T )) =

M∏
m=1

λZ(tm)(tm|H(tm)) exp {−
∫ T

0
λZ(u)(u|H(u))du}.

(2.4)

3. Bayesian inference of MMHP.

3.1. Inference of model parameters. In this paper, we adopt a Bayesian
framework for the inference of MMHP. We are interested in the posterior
distribution of parameter set Θ, given a proposed prior distribution π(Θ)
and observed H(T ). It can be written that,

(3.1) P (Θ|H(T )) ∝ π(Θ)P (H(T )|Θ) = π(Θ)
∑
Z(T )

P (H(T ),Z(T )|Θ).

For better computational stability and convergence, in (3.1), we integrate
out the full latent state trajectory. However, the exact marginalization is
computationally infeasible over the entire set of possible full trajectories of
continuous-time Markov chains (CTMC), S := {Z(T )}. In practice, we are
more interested in the latent state at the time of each event (and also the
initial state), i.e. Z̃(T ) := {Z0, Z1, Z2, ..., ZM}. In order to find an efficient
approximation of (3.1), we divide the computation into subsets of S with

S =
⋃
Z̃(T )

SZ̃(T ), SZ̃(T ) := {Z(T )|Z(tm) = Zm, Zm ∈ Z̃(T ),m = 1, ...,M}.

Here SZ̃(T ) is the set of CTMC trajectories that result in Z̃(T ). Given

each possible combination of observed event states, Z̃(T ), the entire set S
can be decomposed into the union of 2M+1 such SZ̃(T ) realizations.
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The summation in (3.1) over a CTMC family of infinite dimension is then
divided into 2M+1 parts,

(3.2)
∑
Z(T )

P (H(T ),Z(T )|Θ) =
∑
Z̃(T )

∑
Z(T )∈SZ̃(T )

P (H(T ),Z(T )|Θ).

For each term in the outer summation of (3.2), a variational approxi-
mation solution is proposed in section 3.2 (Cohn et al., 2009). Based on
these approximated likelihood summands, we construct an inference pro-
cedure for the whole marginalization in (3.1), utilizing components of the
forward-backward algorithm (Rabiner, 1989). This allows us to implement
an MCMC sampling algorithm and derive the posterior distribution of Θ.
The latent Markov process trajectory is then estimated by the Viterbi al-
gorithm (Rabiner, 1989) and interpolated by maximizing the likelihood of
Z(T ), as outlined in section 3.3. Empirical results (not shown) indicate that
this inference procedure, obtaining both the posterior distribution Θ and the
latent process trajectory, scales linearly in the number of events observed.

3.2. Likelihood approximation. Working with each summand in (3.2),∑
Z(T )∈SZ̃(T )

P (H(T ),Z(T )|Θ) =
∑

Z(T )∈SZ̃(T )

P (Z(T )|Θ)× P (H(T )|Θ,Z(T ))

= P (Z̃(T )|Θ)× EZ|Z̃ [P (H(T )|Θ,Z(T ))].(3.3)

The calculation of P (Z̃(T )|Θ)). This is the likelihood of the Markov pro-
cess embedding at event times, which can be calculated as

P (Z̃(T )|Θ) = δ
I{Z0=0}
0 (1− δ0)I{Z0=1}

M∏
m=1

PZm−1,Zm(∆tm).(3.4)

Following Kolmogorov’s forward equation

dPij(t)

dt
=
∑
k 6=j

qkjPik(t)−

∑
k 6=j

qjk

Pij(t),

we can readily calculate the matrix P(t) = exp (Qt). When there are two
states, it has an explicit form as follows,

P(t) =

[
P11(t) P10(t)
P01(t) P00(t)

]
=

1

q0 + q1

[
q0 + q1e

−(q0+q1)t q1 − q1e
−(q0+q1)t

q0 − q0e
−(q0+q1)t q1 + q0e

−(q0+q1)t

]
.
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Variational approximation of EZ|Z̃ [P (H(T )|Θ,Z(T ))]. We need to approx-

imate the marginalization of all possible trajectories of Z(T ) given a Z̃(T ).
More specifically, we approximate the expectation in the following equation,

EZ|Z̃ [P (H(T )|Θ,Z(T ))] =

M∏
m=1

λZm(tm|H(tm))EZ|Z̃

[
exp {−

∫ T

0
λZ(u)(u|H(u))du}

]
,

(3.5)

where, for u ∈ [0, T ],

λZ(u)(u|H(u)) = λ1(u|H(u))Z(u) + λ0(1− Z(u)) := λ(Z(u), u).

We then derive a variational approximation for

(3.6) EZ|Z̃

[
exp

(
−
∫ T

0
λ(Z(u), u)du

)]
.

Variational approximation is a general numerical tool for approximating
any integral and has been widely used for approximating full posteriors (Blei
et al., 2017). Cohn et al. (2009) pointed out that inference problems related
to CTMC are computationally intractable and it is necessary to construct
an approximation. Given the observations of the event times, our problem
setting is similar to Cohn et al. (2009), except that our observations are point
process. Under our model assumptions, we assume the evidence of the states
is Z̃, e.g., the latent states at the event times. Thus, for our approximation
task, we consider the Markov process density family defined in Cohn et al.
(2009):

MZ̃ := {µz(t), γz1,z2(t) : 0 ≤ t ≤ T}.

Here

µz(t) = P (Z(t) = z), z ∈ {0, 1}

γz1,z2(t) = lim
h→0

P (Z(t) = z1, Z(t+ h) = z2)

h
, z1, z2 ∈ {0, 1}, z1 6= z2,

which satisfies µzm(tm) = 1, µz(tm) = 0, z 6= zm, and other positive, nor-
malizing and marginal conditions as stated in Definition 1 of Cohn et al.
(2009). This definition is critical for the validity of the variational distribu-
tion as proven by Cohn et al. (2009). Although our computation only relies
on the definition of µz(t), we include the second moment definition for the
completeness of the discussion.

Given fZ̃ ∈ MZ̃ , consider the integration EfZ̃ [exp (−
∫ T

0 λ(Z(u), u)du)].
It can be readily approximated by applying Jensen’s inequality as follows.
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EfZ̃ [exp (−
∫ T

0
λ(Z(u), u)du)](3.7)

≥ exp (−EfZ̃ [

∫ T

0
λ(Z(u), u)du])

= exp (−
∫

Σ
fZ̃(σ)

∫ T

0
λ(Z(u), u)dudσ)

= exp

(
−
∫ T

0

∑
z

∫
Σ
fZ̃(σ)IZ(u)=zλ(z, u)dσdu

)

= exp

(
−
∫ T

0

∑
z

λ(z, u)µz(u)du

)
.

Following Theorem 6 of Cohn et al. (2009), (3.6) can be approximated by
the integral (3.7) evaluated at the fZ̃ that minimizes the Kullback-Leibler
divergence (Kullback and Leibler, 1951) from the process of interest given
Z̃(T ). fZ̃ satisfies the condition that,

µz(u) =
Pzm−1,z(u− tm−1)Pz,zm(tm − u)

Pzm−1,zm(∆tm)
, for u ∈ [tm−1, tm).

Given the formulation of µz(u), we are able to calculate the integration
in the (3.7)∫ tm

tm−1

∑
z

λ(z, u)µz(u)du(3.8)

=
∑
z

∫ tm

tm−1

λ(z, u)
exp (Q(u− tm−1))zm−1,z

exp (Q(tm − u))z,zm
exp (Q∆tm)zm−1,zm

du.

Thus, we can calculate the summand in (3.2) by combining (3.3), (3.4),
(3.5) (3.7) and (3.8). This variational approximation allows marginalizing

the likelihood over
{
Z(T ) ∈ SZ̃(T )

}
to be computationally tractable. Given

this intermediate approximated result, which will be denoted as

P̃Θ(H(T ), Z̃(T )) :=
∑

Z(T )∈SZ̃(T )

P (H(T ),Z(T )|Θ),

we will then marginalize over Z̃(t). This can be carried out in linear time by
using the forward component of the forward-backward algorithm (Rabiner,
1989), which is described in Appendix A.3.
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Bayesian inference of MMHP using MCMC. We impose weakly informa-
tive priors for the model parameters: δ0 ∼ U(0, 1), α ∼ N(0, 5), β ∼
log N(0, 0.5), λ1 ∼ log N(0, 1), λ0 < λ1, q0, q1 ∼ log N(−1, 1). λ1 is base-
line intensity for the Hawkes process, which is greater than the rate in state
0, λ0, in order to address model identifiability issue. As part of the MCMC
sampler, we incorporate the above likelihood approximation algorithm and
forward algorithm as in Appendix A.3 to obtain posterior draws of the pa-
rameters. See Algorithm 1 in Appendix A.1 for more details. Computation
was carried out in Stan (Guo et al., 2014).

3.3. Inference of the latent process. Given a posterior draw Θ̂, we may
infer the most likely sequence of hidden states, ẑ1:M , corresponding to the
observed events, ẑ1:M . We apply the Viterbi algorithm (Forney, 1973), which
maximizes the conditional probability: P (Z1:M = ẑ1:M |Θ,∆t1:M ), as shown
in Algorithm 2 in Appendix A.2. Then, the full latent trajectory Z(T ) given
Θ̂ and ẑ1:M is interpolated by maximizing the likelihood of there being no
event between two observed events, given the estimated states at these two
events’ times and the parameter estimate, i.e., P (Z(t)|Zm = ẑm, Zm+1 =
ẑm+1, Θ̂,∆t1:m+1), t ∈ [tm, tm+1). Based on the posterior latent trajectories
corresponding to a sample of the posterior draws of Θ̂, Z(T ) can be esti-
mated by their majority vote at each t.

4. Experiments.

4.1. Experiments on synthetic data. To evaluate the validity of our pro-
posed algorithms for estimating MMHP, we simulate event arrival times
from a generative MMHP model and explore parameter recovery. The sim-
ulation of point processes is based on the thinning algorithm (Ogata, 1981),
a common approach for simulating inhomogeneous Poisson processes.

Estimation of model parameters. Given one fixed set of parameters Θ, we
simulate S = 100 independent sets of synthetic MMHP processes, each with
an independent latent Markov process, and let them run to M = 50 events.

Model estimation was carried out using Algorithm 1 with MCMC sam-
pling. We run four parallel chains with random initial values and 1000 it-
erations per chain, using the first half of each chain for burn-in. For each
parameter we obtain R̂max < 1.1 (Gelman et al., 2013). Since the posterior
distributions are highly skewed, we calculated simulation-efficient Shortest
Probability Intervals (SPIn) (Liu et al., 2015) for the parameter estimates.
For our 95% posterior probability interval using SPIn, the coverage rates of
true values are all above 95%.
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We further examined the sampling distribution of the posterior means
from the S = 100 independent simulated data sets. Figure 4 displays 100
estimated posterior distributions for each model parameters in grey lines.
The purple points and horizontal bars are the average of these posterior
mean estimates and their shortest 95% probability interval. The blue lines
represent prior distributions and red vertical lines indicate the ground truth.
It shows that the sampling distribution of our estimates is centered at the
true value with reasonable precision.

Fig 4: Estimation of the parameters for simulated MMHPs. Red lines: ground
truth; grey lines: posterior distributions; purple segments: 95% Shortest
Probability Intervals (SPIn) (Liu et al., 2015) based on the sampling distri-
bution; blue lines: prior distributions.

Estimation of the latent Markov process. Using synthetic data, we evaluate
how well our proposed algorithm recovers the latent state process. We first
simulate one fixed instance of the latent Markov process Z(T ), and then
generate S = 100 sets of event arrival times given this fixed Z(T ). Numeri-
cal experiments are conducted under different lengths of the latent Markov
process, where the average numbers of events are M = 50, 100, 200 and 500.

Following the inference procedure described in section 3.3, we show the
estimates of the latent Markov process in Figure 5-(a), where the thick black
line is the ground truth of the latent process, the grey lines are the majority
vote estimates for each synthetic processes among S = 100 processes, and
the thick blue line and the blue shades are the average latent trajectory of
S = 100 estimates and its one-standard-deviation confidence bands. The
estimated trajectories reflect the hidden true state process Z(T ), even at
M = 50. As the number of events increases, our estimation of the latent
process becomes more accurate.

Figure 5-(b) provides a comparison between the true intensity function
for one simulated 50-event process and the estimated intensity function that
given the posterior draws of the model parameters and the latent process.
The accuracy of the estimated intensity serves as another validation of our
estimation of the model parameters and the latent state process.

For comparison, we include in Figure 5-(c) the inferred trajectories on
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the same simulated data sets using MMPP, which suffers from biases and
high variability. The inference of the latent process deviates more from the
ground truth when events are more bursty in the state 1. This is because
MMPP assumes a constant intensity in each state and is not flexible enough
to capture the highly heterogeneous event time data that is generated by
the MMHP model. As a result, MMPP systematically underestimates the
intensity in the state 1 and overestimates the intensity in the state 0. This
causes the estimated mean latent process to regress towards 0.5, with the
most sizable deviation taking place during the transition period.

Fig 5: Estimation of the latent Markov process (a) Estimated latent tra-
jectory using the proposed algorithm. (b) Event intensity for one synthetic
process. (c) Estimated latent trajectory using MMPP. (d) Estimated latent
trajectory using MMHPSD.

We also evaluated the performance of MMHPSD (Wang et al., 2012), with
results shown in Figure 5-(d). MMHPSD suggests transitions between states
that are much more frequent than the ground truth. To quantify this differ-
ence between our MMHP model and MMHPSD, we calculate the integrated
absolute error of the inferred latent process, i.e.,

∫ T
0 |Z(t)−Ẑ(t)|dt, as shown

in Figure 6-(a). Figure 6-(b) shows the comparison between MMHP and
MMHPSD, from which we can see that the overly sensitive state-transition
of MMHPSD leads to a larger integrated absolute error.

4.2. Application to email interactions. We can now fit our proposed
model to the directed email pair presented in Figure 1, consisting of emails
from one user to another in a large university over one academic semester.
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Fig 6: Comparison of integrated absolute error between MMHP and MMH-
PSD. (a) An illustration of the integrated absolute error of a latent process,

i.e.,
∫ T

0 |Z(t)− Ẑ(t)|dt. Here, the black line indicates the true trajectory, the
red and blue lines represents the estimated latent process by MMHP and
MMHPSD correspondingly, and the red and blue shaded areas correspond
to the absolute error of the inferred states using these two methods. (b)
Comparison of the integrated absolute error between MMHP and MMH-
PSD under different simulation scenarios.

In total, several million emails between more than 40k members of the uni-
versity were collected. Here we consider the single directed pair shown in
Figure 1, which consists of 78 emails over one academic semester of 122
days.

We apply the proposed MMHP model to this email interaction data, us-
ing Gamma(1, 1) priors for both α and β, with the other priors being the
same as those used in Sec 4.3. Figure 7-(a) plots the inferred latent states
with observed event times and the estimated state trajectory with the one-
standard-error band. MMHP separates bursts of many emails over a period
of only a few days from less frequent periods, consisting of at most one or two
emails per day. This seems well suited to describing behaviour between indi-
viduals in this setting, with several periods of frequent contact throughout
the semester interspersed between regular but less frequent communication.

A common approach to test the goodness-of-fit of point process models
is the time rescaling theorem (Brown et al., 2002). As it states, the com-
pensators {Λm :=

∫ tm+1

tm
λ(u)du}M−1

m=0 , are expected to be independently dis-
tributed following an exponential distribution with rate 1. The MMHP com-
pensators closely follow the exponential distribution with rate 1, as shown
in the QQ plot in Figure 7-(b) and Kolmogorov-Smirnov plot in Figure 7-
(c). Compared to a homogeneous Poisson process, MMPP, MMHPSD and
Hawkes process models, the MMHP model gives the best fit in terms of
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Fig 7: Modeling email interaction data. (a) Estimated latent process for one
directed pair of emails from Figure 1, where the crosses are estimated states
at observed event times; blue line is inferred Z(T ) based on the majority
vote given posterior draws of latent trajectory; the shaded blue area is the
one-standard-error band, constrained to be between 0 and 1. KDE estimate
overlaid with red line. (b) and (c) show the QQ plot and KS plot for point
process compensators of this directed pair.

KS statistic. Further comparison with existing models is given in Supple-
ment S1.2.

4.3. Experiments with social interaction data among mice. In Williamson
et al. (2016), twelve male mice were placed in a large vivarium at the age
of nine weeks. These mice fight each other to establish a social hierarchy.
For twenty-one consecutive days, observations were taken during the dark
phase of the light cycle when mice are most active. During each observation
interval, trained observers recorded the location, time stamp and action of
pair-wise mice interactions. For each interaction, the actor (i.e., winner) and
recipient (i.e., loser) were recorded. The goal of this study was to understand
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how mice collectively establish and navigate their social hierarchy over time
and to identify inconsistent deviations from a linear order.

Based on our study of the dataset, we conjecture that the social inter-
action dynamics of mice exhibit two states: active and inactive, which can
be detected using the proposed MMHP model. After we separate all the
interactions into two states, we expect the active state interactions to follow
a linear hierarchy more closely than with all interactions combined, which
suggests an explanation on how social dominance is established among a
group of mice. Using multiple measurements of linearity for an animal so-
cial hierarchy, we show that it is indeed the case. In addition, the inactive
state interactions offer insights on social structures among the mice that de-
viate from the dominance hierarchy. A cluster analysis of the inactive state
interactions shows that, as time progresses, the extent of between-cluster in-
teractions decreases, which suggests the social structure may be stabilizing.

From this dataset, we considered the relational event dynamics on a fixed
set of actors V = {1, 2, ..., N = 12}. The data consist of all historic events
up to a termination time T : H(T ) = {(im, jm, tm)}Mm=1. For each directed
pair of actors (i → j), the sequence of interaction event times is denoted

by H(i→j)(T ) = {t(i→j)m }M(i→j)

m=0 , where t
(i→j)
0 = 0, and M (i→j) is the number

of interaction events initiated by i and received by j. For the purpose of
this paper, we treat each observation window separately and independently.
This allows us to disregard non-observation time.

Assume that, for each directed pair (i→ j), the dyadic events H(i→j)(T )
follow the MMHP model. The parameters of each process share the same
prior distribution and vary across pairs. To improve the estimation of the
state trajectories, we assume that

λ
(i→j)
0 ∼ N+(

1

∆t
(i→j)
max

, 0.1),

where ∆t
(i→j)
max is the maximum over all interevent times for (i → j). We

assume that the latent state transitions should be less frequent than the fight
frequencies, and set q0 = w0λ0, q1 = w1λ1, where w0 ∼ Beta(0.5, 0.5), w1 ∼
Beta(0.5, 0.5). The other parameters share the following priors:

α ∼ log N(µα, σα), β ∼ log N(µβ, σβ).

These log-Normal priors allow for the longer tails present considering all
interactions within a cohort, compared to the single email interaction pair.

The fights between one pair of these mice are shown in Figure 8. The mice
are observed each day, with some observation periods longer than others. In
several of these observation periods no fights occur. The continuous time
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Fig 8: Interactions between two mice over several weeks. Here the red lines
indicate observation windows (and corresponding days) with interactions
while grey lines indicate time periods where no interactions were observed.
Although we only observe interactions in some of the time windows, we are
still able to estimate the latent process in the windows with observed events.
This also illustrates the latent state changing within a single time window.

MMHP model is flexible in that it allows the latent state to change during
longer observation periods, as seen on day 8 in Figure 8. The latent state is
not constrained to remained fixed within a given observation window.

The active/inactive state separation by MMHP can also help us under-
stand the inconsistency between mice interaction behaviors and their hier-
archy ranks. Given a set of fights among a group of mice, one can calculate
the win/loss matrix, which is a frequency sociomatrix of wins and losses
(So et al., 2015). The (i, j)-th entry in the win/loss matrix represents the
number of times i won against j. For one cohort, Figure 9 plots the win/loss
matrices for all fights and by the active/inactive state. There were 929 fights
in total in this cohort, of which 805 were classified as belonging to the ac-
tive state. The order of rows and columns corresponds to the ranks of mice
using the I &SI method (Vries, 1998). If the interactions strictly follow the
social hierarchy, we expect to see all the interactions in the upper triangle
with a few exceptions that are close to the diagonal. This is not the case in
the overall panel (Figure 9-(a)). The upper triangular structure in Figure
9-(b) suggests that our identified active state of bursty and intensive fights
agrees with hierarchical rank. The inactive state interactions are deviations
from the hierarchy. This suggests that these interactions might be moti-
vated by the mice’s need to explore the social hierarchy without intensive
engagements.
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(a) All fights (b) Active state (c) Inactive state

Fig 9: Plots of mice win/loss matrices for all fights and by states (sorted by
I &SI method (Vries, 1998)).

Measurement All fights Active state Inactive state

Directional Consistency 0.96 0.99 0.85
Triangle transitivity 1.00 1.00 0.80
Inconsistencies in ranking 3 1 2

Table 1
Measures of social hierarchy linearity in the same cohort

To better quantify how closely a set of interactions follow a linear hier-
archy, we calculate the following three measures of social hierarchy linearity
for the win/loss matrix as in Figure 9: Directional consistency (Leiva et al.,
2008), Triangle transitivity (McDonald and Shizuka, 2012) and Inconsis-
tency in the ranking (Vries, 1998). Given a win/loss matrix W , directional

consistency is defined as
∑

i<j
max (Wij ,Wij)−min (Wij ,Wij)

Wij+Wij
, which is the dif-

ference in the proportions of fights won by the more dominant individuals
and that by the more subordinate individuals. For three individuals (i, j, k),
triangle transitivity measures the proportion of triad relations satisfying
transitivity, i.e. 1{i>j,j>k,i>k}, where i > j represents i dominates j and 1{·}
is the indicator function. For W̃ , which is W with its rows and columns
reordered according to a ranking, inconsistency in the ranking equals to∑

i>j 1{W̃ij>W̃ji}. A perfect linear hierarchy ranking would give zero incon-

sistency. Table 1 shows the results of the above measures corresponding to
the win/loss matrix shown in Figure 9.

Figure 10-(a) shows the boxplots of these three measurements for ten
cohorts, which are calculated using all, active, and inactive interactions. All
three measurements suggest a stronger linear hierarchy among the active-
state interactions comparing to all interactions combined.

Williamson et al. (2016) found that day 5 and day 10 were the start
and end of social hierarchy stabilization. Figure 10-(b) summarized this
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(a) State separation measurements (b) Inactive state cluster trend

Fig 10: Summary of state separation result in 10 cohorts.

trend for all cohorts: each line in the plot indicates a cohort’s evolving ratio
of between-cluster interactions and within-cluster interactions. The thicker
line segments represent the ratio values calculated for each day by using
interactions within a sliding one-hour time window. Due to the fact that the
study has different observation times within a day across cohorts, we align
all the cohorts by interpolating the calculated segments (thick lines) with a
thin line. We see that all cohorts show stable clustering after the 10th day.

5. Discussion and conclusion. Although dynamic social interactions
have been widely studied recently, existing models cannot adequately cap-
ture the patterns of event dynamics in social interaction data – sporadic
with bursts and long wait time. In this paper, we proposed a Markov Mod-
ulated Hawkes Process (MMHP) model and its inference algorithms, which
segments different dynamic patterns in event arrival times data. Results
from numerical experiments provide validating evidence on the advantages
of the proposed method over comparable existing methods, in both simu-
lated studies and a real application to both animal behavior data and email
data.

In this paper, the MMHP model and its inference framework are built un-
der the assumption that the latent Markov process has two states for better
model interpretability. It can readily be extended to a R-state latent Markov
process by modifying the computation of the forward-backward algorithm,
as we have included in Appendix B. However, it is challenging to make
this framework computationally practical for R > 2. This also raises iden-
tifiability concerns between the underlying latent process and the Hawkes
processes. Veen and Schoenberg (2008) pointed out that the log likelihood
function of Hawkes processes may be multi-modal and locally flat. This be-
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comes more notable when we consider R generally parametrized Hawkes
processes, modularized by a Markov process. One potential avenue is to
utilise other inference schemes, such as Markov Jump processes Rao and
Teh (2013). Initial simulation studies (not shown here) indicate this is a
promising direction, however this procedure struggles to infer a stable la-
tent process in our model for R = 2. Further work is therefore required to
investigate this inference procedure in this setting before considering the
general R-state problem.

MMHP uses the classic exponential kernel in Hawkes processes, where α
represents the influence of historical events on the intensity and β repre-
sents the decay rate of such influence. A potential extension of the proposed
model could be introducing covariates into α and β. Subsequent inference
can be easily conducted under our framework. Although our current work
emphasizes more on the model interpretation due to the motivation from the
social interaction data, our model can also make predictions on the expected
number of future events with measures of uncertainty.

In this paper, we focused on modeling the sporadic dynamic of one se-
quence of event history that can be assumed as one non-stationary point pro-
cess. In practice, some event streams might be driven by multiple dynamic
processes. One such example is Du et al. (2015), who fitted a nonparamet-
ric Dirichlet mixture of Hawkes processes to a large collection of document
streams and clustered these news articles into separate streams, with each
stream represented by a Hawkes process. A similar mixture of Hawkes pro-
cesses is considered by Xu and Zha (2017). This mixture of Hawkes process
is able to capture the self excitatory patterns seen in mixtures of document
streams, but is not able to capture the long wait times observed in social
interaction data that we consider here. Adding an inactive state with spo-
radic event arrivals to such mixture models via Markov modulation is a
future direction worth exploring.

Furthermore, we assumed independence structure when applying the model
to a network of animals. However, more research can be carried out in terms
of introducing a dependence structure among different animal pairs in a
network. Such a network-structured MMHP will lead to improvements in
model estimates and interpretability. On the other hand, combined with net-
work models, MMHP provides a way of inferring network structure based
on continuous-time event data.
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APPENDIX A: ALGORITHMS

A.1. Posterior Samples. Here we provide the algorithm use to draw
samples from the posterior of the proposed MMHP model.

Algorithm 1 Posterior sampling of parameters for MMHP.

Inputs:
M(number of events), ∆t1:M (interevent time)

Prior:
δ0 ∼ U(0, 1), α ∼ N(0, 5), β ∼ log N(0, 0.5),
λ1 ∼ log N(0, 1), λ0 < λ1, q0, q1 ∼ log N(−1, 1).

Likelihood:
Initialize: m← 0; Am[1]← (1− δ0); Am[2]← δ0.
while m < M do

m← m+ 1
Am[1]← Am−1[1]× P̃Θ(Zm = 1,∆tm|Zm−1 = 1,∆t1:m−1)+

Am−1[2]× P̃Θ(Zm = 1,∆tm|Zm−1 = 0,∆t1:m−1)
Am[2]← Am−1[1]× P̃Θ(Zm = 0,∆tm|Zm−1 = 1,∆t1:m−1)+

Am−1[2]× P̃Θ(Zm = 0,∆tm|Zm−1 = 0,∆t1:m−1)
PΘ(∆t1:M )← AM [1] +AM [2]

Posterior:
Use MCMC to sample from posterior distribution.

Outputs:
Posterior draws of Θ.

A.2. The Viterbi algorithm. Algorithm 2 describes the Viterbi al-
gorithm discussed in the main text to infer the latent states of MMHP.

A.3. The forward backward algorithm. The forward-backward al-
gorithm is a dynamic programming algorithm for computing the marginal
likelihood of a sequence of observations from complete-data likelihood, by
iteratively marginalizing out hidden state variables. As shown in Section 3.2,
we obtained the approximated likelihood after marginalizing over Z(T ) ∈
SZ̃(T ), i.e. P̃Θ(H(T ), Z̃(T )). This is a function of Z̃(T ) = {Z0, Z1, ...., ZM},
which are the states at event times. Utilizing the forward variable, we can
then marginalize over Z̃(T ) computationally efficiently. For convenience, we
denote the event history up to m-th event H(tm) through their interevent
times ∆t1:m := {∆ti := ti − ti−1, i = 1, ...,m}. Hence the forward variable
can be defined as Am(zm,∆t1:m) := P̃Θ(Zm = zm,∆t1:m). It satisfies the
initial condition that A0(z0) = P (Z0 = z0). The forward iteration can be
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Algorithm 2 Viterbi algorithm for Markov Modulated Hawkes Process

Inputs:
Θ̂(Estimation of parameters), M(number of events), ∆t1:M (interevent time)

Initialize:
m← 0; vm[1]← log (1− δ̂0); vm[0]← log (δ̂0)

while m < M do
m← m+ 1

vm[1]← max
k

vm−1[k] + log P̃Θ̂(Zm = 1,∆tm|Zm−1 = k,∆t1:m−1)

vm[0]← max
k

vm−1[k] + log P̃Θ̂(Zm = 0,∆tm|Zm−1 = k,∆t1:m−1)

bm[1]← arg max
k

vm−1[k] + log P̃Θ̂(Zm = 1,∆tm|Zm−1 = k,∆t1:m−1)

bm[0]← arg max
k

vm−1[k] + log P̃Θ̂(Zm = 0,∆tm|Zm−1 = k,∆t1:m−1)

z∗M ← arg max
k

vM [k]

while m′ ≤M do
z∗M−m′ ← bM−m′+1[z∗M−m′+1]

Outputs:
Global optimal sequence of latent state (z∗0 , z

∗
1 , ..., z

∗
M )

derived as

Am(zm,∆t1:m)

= P̃Θ(Zm = zm,∆t1:m)

=
∑
zm−1

P̃Θ(Zm−1 = zm−1,∆t1:m−1)P̃Θ(Zm = zm,∆t1:m|Zm−1 = zm−1,∆t1:m−1)

=
∑
zm−1

Am−1(zm−1,∆t1:m−1)P̃Θ(Zm = zm,∆tm|Zm−1 = zm−1,∆t1:m−1)

Given the last forward variable, we obtain the whole marginalized likeli-
hood as ∑

Z(T )

P̃Θ(H(T ), Z̃(T )) =
∑
zM

AM (zM ,∆t1:M )

APPENDIX B: GENERAL R STATE ALGORITHM

For completeness, we describe our MMHP procedure for general R states
here. For this, we define CTMC with R states as Z(t), t ∈ [0, T ], Z(t) ∈
{1, 2, ..., R}. The initial probability vector is δ := {δ1, ..., δR}, where

∑R
r=1 δr =

1. The infinitesimal generator matrix Q is a R×K matrix defined as
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Q =


q1,1 q1,2 · · · q1,R

q2,1 q2,2 · · · q2,R
...

...
. . .

...
qR,1 qR,2 · · · qR,R

 ,
where qr,r = −

∑
j 6=r qr,j .

For each t ≥ 0, there is a probability transition matrix, denoted as P(t) :=
[Pij(t)]i,j∈{0,1}. Each entry Pij(t) is defined as the probability that the chain
will be in state j at time u + t (t > 0) given the chain is in state i at time
u, i.e. for each u ≥ 0,

Pij(t) = P (Z(u+ t) = j|Z(u) = i).

Following Kolmogorov’s forward equation, we know that P(t) = exp (Qt).
Given Z(t) = r, define the Hawkes intensity as λr(t) = λ0,r+αr

∑
tm<t

e−βr(t−tm).
To derive the forward algorithm:

Am(zm,∆t1:m)

= P̃Θ(Zm = zm,∆t1:m)

=
∑
zm−1

P̃Θ(Zm−1 = zm−1,∆t1:m−1)P̃Θ(Zm = zm,∆t1:m|Zm−1 = zm−1,∆t1:m−1)

=
∑
zm−1

Am−1(zm−1,∆t1:m−1)P̃Θ(Zm = zm,∆tm|Zm−1 = zm−1,∆t1:m−1)

Here, to be precise,

P̃Θ(Zm = zm,∆tm|Zm−1 = zm−1,∆t1:m−1)

= Pzm−1,zm(∆tm)λzm(tm|H(tm)) exp {−
∫ tm

tm−1

λ(u|H(u))du}.

We give the full details of the algorithms required for the general R-state
model in Algorithm 3 and Algorithm 4.



27

Algorithm 3 Posterior sampling of parameters for R-state MMHP.

Inputs:
M(number of events), ∆t1:M (interevent time)

Prior:
δ0 ∼ U(0, 1), α ∼ N(0, 5), β ∼ log N(0, 0.5),
λr ∼ log N(0, 1), Q ∼ log N(−1, 1).

Likelihood:
Initialize: m← 0; Am[r]← δr, for r ∈ {1, ..., R}.
while m < M do

m← m+ 1
for r=1,...,R do
Am[r]←

∑R
j=1Am−1[j]× P̃Θ(Zm = r,∆tm|Zm−1 = j,∆t1:m−1)

PΘ(∆t1:M )←
∑R

r=1AM [r]

Posterior:
Use MCMC to sample from posterior distribution.

Outputs:
Posterior draws of Θ.

Algorithm 4 Viterbi algorithm for Markov Modulated Hawkes Process

Inputs:
Θ̂(Estimation of parameters), M(number of events), ∆t1:M (interevent time)

Initialize:
m← 0; vm[r]← log (δ̂r), r = 1, ..., R.

while m < M do
m← m+ 1

for r=1,...,R do
vm[r]← maxj vm−1[j] + log P̃Θ̂(Zm = r,∆tm|Zm−1 = j,∆t1:m−1)
bm[r]← arg max

j
vm−1[j] + log P̃Θ̂(Zm = r,∆tm|Zm−1 = j,∆t1:m−1)

z∗M ← arg max
r

vM [k]

while m′ ≤M do
z∗M−m′ ← bM−m′+1[z∗M−m′+1]

Outputs:
Global optimal sequence of latent state (z∗0 , z

∗
1 , ..., z

∗
M )

SUPPLEMENTARY MATERIAL

S1.1. Discussion of data binning. To further illustrate the difficul-
ties of correctly binning continuous time data, we illustrate kernel density
estimates with a range of bandwidths. As can be seen in Figure S1, it is only
when the bandwidth of the kernel density is sufficiently small that it begins
to capture the sporadic and bursty nature of interaction times. This indi-
cates that a continuous time model is needed to fully capture the dynamics
in this data.
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S1.2. Further model comparison. Here we illustrate further how
existing models fail to capture the latent dynamics present in the data we
analysed.

We fit each of the other models from the literature to the email interaction
data and illustrate lack of model fit using the methods described in Sec 4.2.
Figures S2,S3 and S4 so model evaluation tools for each of the alternative
models considered in the paper. As shown by the compensator plots, each
of these models are not able to capture the nature of this arrival data.
Similarly, performing a Kolmogorov-Smirnov test on the rescaled inter-event
times under each model indicates departures from independent identically
distributed exponential random variables.
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Fig S1: Plots of the jittered event times for the email interaction data along
with corresponding kernel density estimates for a range of decreasing band-
widths.
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Fig S2: Compensator plots for Hawkes. These illustrate how this model is
not able to capture the latent dynamics present in the data.

Fig S3: Compensator plots for MMPP. These illustrate how this model is
not able to capture the latent dynamics present in the data.

Fig S4: Compensator plots for MMHPSD. These illustrate how this model
is not able to capture the latent dynamics present in the data.
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