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Summary. Group-based social dominance hierarchies are of essential interest in animal
behavior research. Studies often record aggressive interactions observed over time, and
models that can capture such dynamic hierarchy are therefore crucial. Traditional ranking
methods summarize interactions across time, using only aggregate counts. Instead, we
take advantage of the interaction timestamps, proposing a series of network point pro-
cess models with latent ranks. We carefully design these models to incorporate important
characteristics of animal interaction data, including the winner effect, bursting and pair-
flip phenomena. Through iteratively constructing and evaluating these models we arrive
at the final cohort Markov-Modulated Hawkes process (C-MMHP), which best character-
izes all aforementioned patterns observed in interaction data. We compare all models
using simulated and real data. Using statistically developed diagnostic perspectives, we
demonstrate that the C-MMHP model outperforms other methods, capturing relevant latent
ranking structures that lead to meaningful predictions for real data.

Keywords: Animal Behaviour, Hawkes Processes, Latent Ranking, Network
Point Processes, Social Hierarchy

1. Introduction

In this paper we consider the problem of providing a general framework for modeling
hierarchy among a group of mice through their observed repeated aggressive interactions.
We do this using data from the study conducted by Williamson et al. (2016), in order
to answer the unsolved questions in that work. Describing the dominance structure of
such interactions well is a difficult task. Section 2 presents a overview of existing well-
known methods for dominance ranking and their properties. These existing methods
suffer several common issues, including the inability to rigorously evaluate the estimated
ranking and the inability to deal with the temporal component of these interactions.
Specifying statistical generative models therefore provides a natural way to characterize
the structure of these social groups more generally. One focus of the models we develop
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here is the ability to capture the temporal and network dynamics of the social dominance
hierarchy. In Section 3, we take advantage of the timestamps of these interactions and
propose three network point process models: the cohort Hawkes process model (C-HP),
the cohort degree corrected Hawkes process model (C-DCHP) and the cohort Markov-
modulated Hawkes process model (C-MMHP). We construct these models such that
these point processes are a function of a set of latent rank variables. These latent
rank variables are a powerful feature of our models, allowing us to incorporate various
known characteristics of animal behavior into our model. We develop these models
in a Bayesian framework to capture uncertainty estimates and to better model pairs
which contain few interactions. We iteratively develop each model from the previous to
better account for dynamics seen in animal data. This results in our final Cohort-Markov
Modulated Hawkes Process (C-MMHP) model. In Section 4, these models are compared,
using simulated and real data, to existing methods for understanding animal dominance
ranking. We illustrate that our final model is flexible and adequately captures dynamics
of dominance hierarchy by showing results on rank inference, prediction performance
and residual analysis. Section 5 summarizes this work and discuss future directions for
our proposed model.

2. Background

Here we review the literature on social hierarchy for group-living animals. Empirical
studies of the social hierarchy of animals that live in a group are generally developed
based on the observations of dyadic, or pairwise, agonistic interactions. In Williamson
et al. (2016), the agonistic interactions include fighting, chasing and mounting behaviors.
We consider all such aggressive interactions without differentiating the type. We denote
the interactions between N animals as a matrix W , where Wij is the number of aggressive
interactions initiated by animal i towards animal j. In So et al. (2015) and Williamson
et al. (2016), this is also called a win/loss matrix.

Two approaches are generally considered in the animal behavior literature to analyse
this win/loss matrix (Drews, 1993): functional methods and structural methods. Func-
tional methods aim to directly infer a ranking of animals from this win/loss matrix by
rearranging this matrix in an attempt to best capture behavioral patterns, expected in
a social hierarchy. The rank is therefore inferred directly from the observations recorded
in the win/loss matrix. If Wij > Wji then functional methods infer that i dominates j.
Alternatively, structural methods propose an indirect model-based approach, associating
a latent ranking variable Fi with individual i. If Fi > Fj then these structural methods
infer that i dominates j. These latent variables are constructed to satisfy a set of a priori
assumptions, and structural models attempt to estimate these latent ranks to best align
with the behavior captured in W .

One clear advantage of model-based approaches is that W is a noisy realisation of
the true underlying dominance ranking among animals. Methods which attempt to
directly infer the ranking from W can therefore be unstable and unable to account
for even small deviations from expected behavior. Model-based approaches, relying on
structural methods, hold the potential to explore more complex behavioral patterns in
such animal data and can also help generate hypotheses about this data which can be
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further explored.
An important concept in dominance ranking is linearity. Under a strict linearity as-

sumption, for any three individuals, i, j, and k, if i dominates j and j dominates k, then i
is assumed to dominate k. In social network research, this closed triad relationship is also
called transitivity. For functional methods, the linearity assumption intuitively follows
from observational studies of group-living animals. However, phenomena that violate a
strict linearity assumption are often observed. In these cases, functional methods aim
to find a nearly linear ranking that is most consistent with the observed wins and losses.
Meanwhile, in structural methods, the linearity assumption is not directly observable
but is incorporated as a property of the latent parameter F . The goal for structural
methods is to study the model that can mostly reflect the formation mechanisms of
dominance hierarchy.

One popular functional model is the I&SI method of de Vries (1998). The I&SI
method is a matrix-reordering method that identifies ordinal rankings of individuals
that are most consistent with a linear hierarchy, by iteratively minimizing two criteria:
the number of inconsistencies (I ) and then, conditionally, the total strength of the incon-
sistencies (SI ) without increasing I. The number of inconsistencies (I ) is the number of
pairs in which the lower-ranked individual wins more frequently than the higher-ranked
individual in a given win/loss matrix, W̃ ,

I =
∑
i>j

1{W̃ij>W̃ji},

where 1{·} is an indicator function. The matrix W̃ is generated by reordering the original
win/loss matrix W according to a ranking of the individuals. The strength of a single
inconsistency is the absolute rank difference of the inconsistent pair. Then, the total
strength of the inconsistencies (SI ) is the sum of strengths of all inconsistencies in W̃ ,

SI =
∑
i>j

|i− j|1{W̃ij>W̃ji}.

An example is shown in Figure 1. The original win/loss matrix in the example is W ,
which corresponds to I = 3 and SI = 7. According to the I&SI ranking method, the
matrix is reordered to yield W̃ , the rightmost matrix in Figure 1, in which I = 1 and
SI = 3. Intuitively, the I&SI method finds the order of the rankings that is most
consistent with a linear hierarchy. Although such a perfect linear hierarchy usually does
not exist, I&SI aims to find a ranking where any inconsistencies take place between
individuals that are close in rank. In other words, the I&SI method is most likely to
allow for inconsistent dyads near the diagonal.

This method suffers from the problem that the algorithm is not guaranteed to con-
verge to a unique optimal solution (de Vries and Appleby, 2000). In particular, when
there is a tie in the number of wins/losses (Wij = Wji > 0) or an unknown relationship
(i.e., where there is little information, Wij = Wji = 0), the result highly depends on the
choice of rules for assigning rankings. Another reason for the divergence is the method’s
reliance on only an asymmetric relationship between the number of wins and losses,
instead of the absolute difference. Such a simplified binary dominance measure ignores
important information in the data – the total number of fights. It is often observed that
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Fig. 1. An example of a win/loss matrix and the corresponding reordered matrix according to
the I&SI method. The entries shaded in red in the matrix are the inconsistencies, where the
lower-ranked individual wins more frequently than the higher-ranked individual.

the distribution of dominance power exhibits a high discrepancy (Chase et al., 2002),
such as when highly ranked animals win a larger number of fights against intermediately
ranked animals than these intermediate animals win against lowly ranked animals. This
is seen in a win/loss matrix with large variation in the values of Wij , but an ordinal
ranking from a binary dominance measure is not discriminative enough to demonstrate
that. Williamson et al. (2016) provide an analysis of monopolization of the most dom-
inant mouse in each cohort, which suggests the necessity for considering a real-valued
score instead of the ordinal rank.

Winner-loser models are an important family of structural methods that explain the
formation of linear dominance hierarchy (Lindquist and Chase, 2009). Commonly, the
models assume an innate power parameter for each individual i, denoted as Fi (some
models may assume a time-variant version, i.e. Fi(t)) (Bonabeau et al., 1999; Dugatkin,
1997; Hemelrijk, 2000). Although different models have their own specific formulations,
common components they share are: an interaction probability and a dominance proba-
bility. Both are functions of innate power. The mathematical formulation of the models
will not be discussed here, but some assumptions used in these model are of interest.
One essential idea is the winner effect, the phenomenon in which an animal that has ex-
perienced previous wins will continue to win future aggressive interactions with increased
probability. Although the extent and effectiveness of these winner effects remains un-
clear, evidence from experiments show that they exist and vary in different groups and
species (Dugatkin, 1997; Dugatkin and Earley, 2003; Hsu and Wolf, 1999). Experimen-
tal evidence also shows patterns that are challenging to capture through winner-loser
models, such as bursting and pair-flips. Bursting means that higher-rank animals often
exhibit successive fighting of lower-rank ones in an extended period of time. Pair-flips
describe the situation when a pair of animals exchange the direction of their aggressive
acts before a stable dominance relationship is established. A potential model for learn-
ing a latent hierarchy should therefore be able to incorporate these characteristics. In
Section 4 we describe several existing structural and functional models in detail, which
we use for comparison with our proposed methods.
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2.1. Issues with conventional approaches
In summary, although the current methods have certain advantages, they suffer from
several issues. The use of an ordinal ranking alone may not be informative enough
to describe the unequal distribution of dominance power which is commonly observed.
Similarly, a more systematic solution is needed for modeling the temporal dynamics
of the dominance hierarchy, instead of relying on empirical scores. The timestamps of
these interactions are also likely to contain information about the particular hierarchy
formation, and this time information should not be discarded While existing structural
models for this data provide much potential to understand the underlying drivers of an-
imal behavior, methods to evaluate these models have been limited, as seen in Lindquist
and Chase (2009). These models are generally not built under the statistical framework
of a generative model and so it is hard to assess the goodness of fit of these models.
The utilisation of a probabilistic generative model for latent ranking therefore provides
the potential to rigorously assess model fit and help formalise scientific hypotheses. In
the next section we will develop generative point process network models for this data,
which we then compare with these existing methods in Section 4.

3. Latent ranking structured network point process models

In this section, we propose a hierarchy of probabilistic generative models to address com-
mon issues with conventional approaches, as discussed in the previous section. Inspired
by theories on social hierarchy among group-living animals, there are various properties
that we want to take into account when constructing the model: inconsistencies lying be-
tween the interactions and rankings, the time-evolving nature of the hierarchy dynamic,
the winner effect, bursting and pair-flips phenomenons, etc. Our model is designed to
be interpretable and flexible enough to capture these key features of group-living animal
behavior.

We first introduce the required notations on point process models and network data,
leading to a model for network point processes (Section 3.1). We then propose three
such network point process models based on latent (structural) rankings (Section 3.2).
We motivate the development of each of these models in turn by examining the prop-
erties each model fails to capture in one cohort of mice interaction data (described in
Section 4.4), using the inference procedure described in Section 4.2.

3.1. Network point process models for animal interactions
Animal aggressive interaction data is essentially network data, where the senders are
the winners of the fights and the receivers are the losers. To consider the necessary
information lying in the timestamps of interactions, we introduce point process models
on networks. In this section, we start with notation and a discussion on point processes
in general (i.e., for non-network data), with a focus on the Hawkes process. We then
introduce the notation for network event arrival data and network point process models.

Point process models. Consider event arrival time data that consists of all event history
up to a final-observation time T : H(T ) = {tm}Mm=0, where t0 = 0, tM = T , and M is
the total number of events. An equivalent representation of this event history H(T ) is
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via a counting process, N(t), where N(t) is a right-continuous function that records the
number of events observed during the interval (0, t]. The associated stochastic property
is usually specified by its conditional intensity function λ(t|H(t)) at any time t ∈ (0, T ],
conditioning on current history H(t),

λ(t|H(t)) = lim
∆t→0

Pr(N(t+ ∆t)−N(t) = 1|H(t))

∆t
.

This is the instantaneous expected rate of events occurring around a time t given the
history. Inference on the intensity function is conducted by evaluating the likelihood
function for a sequence of events up to time T , H(T ), which can be expressed as (Daley
and Jones, 2003)

M∏
m=1

λ(tm|H(tm)) exp
{
−
∫ T

0
λ(s|H(s))ds

}
. (1)

A Hawkes process (Hawkes, 1971) is a linear self-exciting process that can explain
bursty patterns in event dynamics. For a univariate model, the intensity function with
exponential triggering function is defined as

λ(t) = λ1 +
∑
tm<t

αe−β(t−tm), (2)

where λ1 > 0 specifies the baseline intensity, α > 0 calibrates the instantaneous boost
to the event intensity at each arrival of an event, and β > 0 controls the decay of past
events’ influence over time.

Network point process models. Consider a network consisting of a fixed set of N nodes,
V = {1, 2, ..., N}. For each directed pair of nodes (i, j), the observations of interactions
(fights) between them up to terminal time T includes the sender (winner) i, the receiver

(loser) j and a sequence of event times Hi,j(T ) := {ti,jm }M
i,j

m=0. Hence, a network Hawkes
process model has a conditional intensity function for each pair (i, j) at time t given by
λi,j(t|Hi,j(t)). The likelihood of the interactions on the whole network is then

N∏
i=1

N∏
j 6=i

M i,j∏
m=1

λi,j(ti,jm |Hi,j(ti,jm )) exp
{
−
∫ T

0
λi,j(s|Hi,j(s))ds

}
.

3.2. Latent ranking structured models for network point processes
Motivated first by the winner effect reviewed in Section 2, we model the conditional
intensity of interactions between a given sender receiver pair as a function of their event
(winning) history. Although experimental observations cannot explicitly verify the ex-
tent or persistence of influence of historical events, the intensity formulation in the
Hawkes process can help us model this winner effect flexibly. In a Hawkes process, α
describes the extent to which previous wins influence the tendency to engage in a new
fight. β represents the persistence – how fast this effect decays over time. A large β
means that the winner effect decays quickly and only the most recent wins influence the
tendency to engage in aggressive interactions at the present time.
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For a directed pair (i, j), the Hawkes process intensity is

λi,j(t) = λi,j1 + αi,j
∑
k

exp (−βi,j(t− ti,jk )),

where λi,j1 , αi,j and βi,j are pair-wise parameters in Hawkes process. For all pairs, we
introduce structure in the pair-wise parameters by assuming a latent rank variable,
fi ∈ [0, 1], i = 1, 2, ..., N . This is similar to the latent characteristic concept used in the
winner-loser models (Lindquist and Chase, 2009) and the latent rank in the aggregate-
ranking model (De Bacco et al., 2018) reviewed in Section 4.1.2. The latent rank variable
essentially embeds each individual in a one-dimensional unobserved ranking space. We
constrain the pair-wise intensity function by bounding the latent rank in order to avoid
issues with model identifiability. This latent rank variable is a powerful feature of our
model as it allows us to incorporate various model assumptions by specifying particular
forms of the parameters λi,j1 , αi,j and βi,j in the intensity function, as we will discuss in
Section 3.2.1, 3.2.2 and 3.2.3.

3.2.1. Cohort Hawkes Process (C-HP) Model

In the first model, we assume a baseline intensity, λ1, and that the rate of decay for
historical events, β, is constant across pairs. We structure the impact of historical
events on each pair as a function of the pair’s latent ranks fi, fj and parameters η, i.e.
αi,j := gη(fi, fj). Inspired by the inconsistency and strength of inconsistency concepts
in the I&SI method, we expect that the function gη(fi, fj) satisfies the following: (1)
gη(fi, fj) > gη(fj , fi) when fi > fj ; (2) gη(fi, fj) is a decreasing function of |fi − fj |
when fi − fj < 0. Hence, we consider,

gη(fi, fj) := η1fifj exp (−η2|fi − fj |)logistic(η3(fi − fj)),

where η := (η1, η2, η3). Figure 2-(a) shows the contour plot of gη(fi, fj), with η1 =
7.02, η2 = 0.39, and η3 = 1.66, which are estimated values from real data analyzed in
Section 4.4. Note that the x-axis in Figure 2-(a) is decreasing from left to right, in
order to be consistent with the arrangement of a win/loss matrix, where the interactions
between the most dominant pairs are displayed in the top left. We notice that the
function takes higher values when fi > fj (upper right triangle of Figure 2-(a)), compared
to values when fi < fj (lower left triangle of Figure 2-(a)). This ensures that aggressive
behaviors are directed more frequently from a dominant individual towards a submissive
individual, mirroring the inconsistency concept in I&SI method. The contour plot also
shows that the form of this function agrees with the idea of minimizing the total strength
of the inconsistencies in the I&SI method: it has a smaller value when fi < fj and |fi−fj |
is larger (moving from the diagonal to lower left triangle of Figure 2-(a)).

Now, the intensity in the C-HP model is

λi,j(t) = λ1 + gη(fi, fj)
∑
k

exp (−β(t− ti,jk )).
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Fig. 2. (a) Contour plot for αi,j := gη(fi, fj) where fi, fj ∈ [0, 1]. (b) Matrix of K-S statistics after
fitting the C-HP model to the real data (reordered by I&SI ranking). The rows and columns of this
matrix correspond to senders and receivers of an agonistic behavior, respectively. Color shading
reflects the values of the K-S test statistics. Red lines are empirical cumulative distribution
functions of rescaled-inter-event times and black lines are cumulative distribution functions of
exponential random variable with rate 1.

To assess the goodness-of-fit of point process models, according to the time rescaling
theorem (Brown et al., 2002), we can test whether the rescaled-inter-event times {Λm :=∫ tm
tm−1

λ(s)ds}Mm=1, are independently distributed following an exponential distribution

with rate 1. We fit this model to data corresponding to interactions between a group
of 12 mice, using the inference procedure of Section 4.2 We describe this data in more
detail in Section 4.4. For each pair (i, j), we conduct a Kolmogorov-Smirnov test on

the rescaled-inter-event times {Λi,jm :=
∫ ti,jm

ti,jm−1

λi,j(s)ds}M i,j

m=1 and show the test statistics

result in Figure 2-(b). The background color indicates the value of the K-S statistics.
The values of these K-S statistics and the empirical cumulative distributions, such as
on the sixth row and penultimate column, indicate a systematic lack of fit with this
model. This suggests that this model does not adequately address individual baseline
event intensities.

3.2.2. Cohort Degree Corrected Hawkes process (C-DCHP)
The cohort Hawkes process model (C-HP) model assumes a constant baseline rate λ1

and is incapable of modeling the degree heterogeneity of the observed nodes. However,
it can be observed from Figure 2-(b) that this model tends to consistently fit poorly for
pairs which include certain individuals, for example those pairs in which the sender is
individual 3 or the receiver is individual 7. To address this issue, we extend the C-HP
model, allowing varying baseline intensity rates across pairs. We accommodate degree
heterogeneity in the pairwise baseline rate λi,j1 by introducing a set of non-negative out-
degree-correction parameters γi and in-degree-correction parameters ζj , i, j = 1, 2, ..., N .

With the baseline rate defined as λi,j1 = γi + ζj , we have the intensity function as

λi,j(t) = γi + ζj + gη(fi, fj)
∑
k

exp (−β(t− ti,jk )).
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This model introduces degree-correction parameters in the baseline rate of the C-HP
model, hence, we refer to it as the cohort degree corrected Hawkes process model (C-
DCHP). Figure 3 shows the baseline intensity matrix after fitting this model to the
same cohort in Figure 2-(b). These estimates suggest that a model which allows more
flexible intensities may indeed be needed to capture the heterogeneity in behavior across
individuals. We can see that this degree correction successfully adjusts for less active
actors or recipients. For example, consider individuals 8 and 9; as shown in Figure 3,
their estimated λij1 s are relatively large indicating that both individuals are more active
in terms of interaction frequency; individual 9 tends not to initiate many fights and
individual 8 tends not to be the recipient of many fights. Importantly, these differences
in activity level are individual-level attributes and require separate consideration when
we are interested in learning about dominance hierarchy from dyad-level agonistic inter-
action data. The resulting inferred ranks from the C-DCHP model for such individuals
are more consistent with the ranking obtained from existing methods, compared to the
inferred ranks from the C-HP model. Similarly, the resulting Kolmogrov-Smirnov statis-
tics from estimating the goodness of fit of the C-DCHP model are on average smaller
than those obtained for the original C-HP model, indicating improved performance in
modeling the true underlying data generating process. However, the C-DCHP model
consistently assigns a very large out-degree parameter value to the most dominant in-
dividual, as shown in Figure 3 and seen for all real data examples we consider. This
complicates inference for the latent ranks of high-ranked individuals and leads to poor
model performance for any interactions not involving this individual. In observed data,
these interactions excluding this dominant individual more often exhibit more sporadic
behaviour, with long periods where no events are observed, a feature we consider in the
following model.

3.2.3. Cohort Markov-modulated Hawkes Process (C-MMHP)

In Wu et al. (2019), the Markov-modulated Hawkes Process (MMHP) is proposed to
model sporadic and bursty event occurrences. The model utilises a latent two-state
continuous-time Markov chain (CTMC) Z(t) to better describe event dynamics. In
state 1 (the active state), events occur according to a Hawkes process, while in state
0 (the inactive state), according to a homogeneous Poisson process. The transition of
Z(t) is modeled through an infinitesimal generator matrix with parameters {q1, q0}, such
that,

Q =

[
−q1 q1

q0 −q0

]
. (3)

Hence, for one MMHP, the conditional intensity function given the latent Markov
process Z(t), history events H(t) and parameter set Θ = {λ0, λ1, α, β, q1, q0} is

λ(t|Z(t),H(t),Θ) =

{
λ0, when Z(t) = 0,

λ1 + α
∑

k exp (−β(t− tk)), when Z(t) = 1.
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Fig. 3. Matrix of baseline rates λi,j1 (reordered by I& SI rankings). These degree corrected
baseline rates allow for a more flexible node level model, clearly seen in the top row (a mouse
which is involved in starting a large number of fights) and the bottom row (a mouse which does
not start any fights but is often fought).

Implicitly, the intensity function has the form

λ0 + (λ1 − λ0)Z(t) + αZ(t)
∑
k

exp (−β(t− tk)).

Thus, the latent process provides substantial flexibility in modeling the baseline rate as
well as the extent of historical event influence.

We can readily extend this model to the network setting, where for each pair (i, j),
the intensity follows,

λ(t|Zi,j(t),Hi,j(t),Θi,j) =

{
λi,j0 , when Zi,j(t) = 0,

λi,j1 + αi,j
∑

k exp (−βi,j(t− ti,jk )), when Zi,j(t) = 1.
(4)

Here Θi,j := {λi,j0 , λi,j1 , αi,j , βi,j , qi,j1 , qi,j0 } is the parameter set for pair (i, j). qi,j1 and qi,j0
are the instantaneous transition probabilities for the latent CTMC Zi,j(t) of a pair (i, j).

Zi,j(t) are independent across pairs. The transition probability qi,j1 (qi,j0 ) represents the
probability that pair (i, j) transitions out of the active (inactive) state and is modelled
as a function of the latent ranks, fi, fj . To understand the behavior of these latent state
transition parameters for each pair (i, j), consider the stationary distribution of the
latent CTMC, Z(i,j)(t). For an irreducible and recurrent CTMC Z(t) with infinitesimal
generator as shown in (3), a stationary distribution π satisfies πTQ = 0 (Yin and Zhang,
2012). Hence for a pair (i, j), the limiting behavior of their latent state transitions

dictates that they spend qi,j0

qi,j0 +qi,j1

of their time in the active state, and all remaining time

in the inactive state. With the hope that if i dominates j, i.e. fi > fj , the pair (i, j)
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will spend lots of time in the active state, we form the transition probabilities as,

qi,j1 = exp (−η3fi)

qi,j0 = exp (−η3fj).

Hence, when individual i is stronger than individual j, the directed pair (i, j) should

be more likely to start and stay fighting (i.e. large qi,j0 and small qi,j1 ) than the pair
(j, i). This follows the asymmetry property of aggressive behavior in group animals.
The limiting distribution of time spent in state 1 is Logistic(η3(fi − fj)).

Given the latent process between pair (i, j), Zi,j(t), we assume that βi,j is a constant
β across pairs. As in the C-HP and C-DCHP models, we model the winner effect αi,j as
taking the form η1fifj exp(−η2|fi−fj |). Like the C-DCHP, we again consider the degree

correction described in the previous model here, giving λi,j0 = γi + ζj . λ
i,j
1 is defined by

λi,j1 = λi,j0 (1 + wλ),

for a common wλ, to ensure that the base rate of the point process in the active state is
greater than the inactive state. Hence we have the intensity from i to j given by

λi,j(t) = λi,j0 + (λi,j1 − λ
i,j
0 )Zi,j(t) + η1fifj exp(−η2|fi − fj |)Zi,j(t)

∑
k

exp (−β(t− ti,jk )).

3.3. Model inference
Bayesian modeling. Throughout this paper, we adopt a Bayesian framework for our

model inference. Assuming a prior distribution for the model parameters and given a
model likelihood, the posterior distribution for quantities of interest can help us calibrate
the uncertainty in the model. This is an important aspect of our current research
strategy. First, we need tools that can quantify uncertainty in rank inference. For
example, in Williamson et al. (2016), the analysis shows that the pair-flips phenomenon
exists in some cohorts, which means that the direction of aggressive interaction changed
over time. In a Bayesian modeling framework, we can naturally capture this effect
through uncertainty in the model parameters: we suspect that individuals that are
involved in pair-flip phenomena should have larger posterior variances for their latent
ranks. Second, in each cohort, there always exists some pairs that have few or no
interactions across the observation time window. A Bayesian framework can achieve
robust inference in such conditions, with the assistance of prior assumptions and by
borrowing strength from the data of other pairs. In this paper, we will use the Stan
modeling language (Carpenter et al., 2017) to fit all models and to obtain posteriors
samples for model parameters. We describe further details of our inference procedure in
Section 4.2.

4. Results

4.1. Comparison Models
Before analysing the performance of our models on both real and simulated data, we first
describe in detail existing methods used to analyse dominance behavior in animals, which
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we shall use for comparison of inferred rankings. As described above, these methods can
be broadly classified as functional and structural.

4.1.1. Functional methods
Along with the I&SI method, So et al. (2015) and Williamson et al. (2016) use the Glicko
rating system to calculate temporal changes in dominance scores of each animal in each
cohort. This is a dynamic paired comparison system that calculates a temporal sequence
of cardinal scores based on the history of dyadic wins and losses (Glickman, 1999). All
individuals start with the same initial rating. After each observed fight between a pair,
the winner (or the loser) gains (or loses) points according to a decreasing function of
the difference between their previous scores. In this case, fighting between pairs whose
scores differ a lot will not result in significant changes in the system. The calculation
of the Glicko score depends on a predefined constant, which determines the volatility of
the score changes. Since scores are computed after each fighting event, this method can
capture the temporal dynamics of the dominance hierarchy, although it does not account
for temporal components, such as the time between events. Williamson et al. (2016) also
provides a clear visualization of the change in the dominance score based on this method,
where the emergence and stabilization of the hierarchy can be easily deduced from the
graph. However, this method is ad-hoc in the sense that there are no theoretical rules
for researchers to choose important key aspects of this method, including the initial
rating, the decreasing function for changing a pair’s scores after an observed fight, or
the constant controlling the volatility of score changes. Since the method focuses on
summarizing the observations without any formal modeling, it can be hard to provide
formal insights regarding the evolution of hierarchy dynamics. It is also not always clear
how to draw a conclusion about the hierarchy structure from the visualization of the
rating system.

4.1.2. Structural methods
Lindquist and Chase (2009) apply winner-loser models to real experimental data of hens
and show the lack of fit between these models and the data. However, this procedure
is qualitative only, by comparing simulation results from the models with the real data.
The probabilistic generative models we proposed in Section 3 are able to capture these
important animal behavior phenomena, including the winner effect, bursting and pair-
flips. We also develop a corresponding statistical inference procedure which means that
model-fitting can be assessed by rigorous statistical model diagnostics, rather than rely-
ing on simulations as in Lindquist and Chase (2009). We analyse our models using these
diagnostics in Section 4.3 and Section 4.4.

A more recent structural model is De Bacco et al. (2018), which introduced a physics-
inspired model to infer cardinal hierarchical rankings of individuals in directed networks.
By assuming that individuals are more likely to interact with others of similar rank, they
propose an optimization solution and a generative model to find real-valued ranks of
individuals. For a pair (i, j), with latent rank variables fi and fj , the aggregate-ranking
model uses Poisson regression to model the aggregate counts between the pair over the
entire observation period, denoted as Ni,j , as a function of the difference in their ranks.
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This is essentially the counting process evaluated at time T , N i,j(T ), ignoring the exact
event times. However, the only information used in the model is the existence and
direction of the interactions in the network. We refer to this model as the aggregate-
ranking model. Only using the aggregate counts of interactions makes it hard to address
phenomena like the winner effect, bursting and pair-flips mentioned in Lindquist and
Chase (2009). Event time data which records when the aggressive behaviors occur is
highly detailed and contains information needed to describe the important phenomena
mentioned earlier.

4.2. Model implementation
To perform inference for each of these models we perform Bayesian inference using
the Stan programming language (Stan Development Team, 2020). We impose weakly
informative priors for the model parameters where possible. In particular, for each model
we use logN(0, 1) priors on η1, η2, η3, U[0, 1] priors for f and a logN(0, 2) prior for wλ in
the C-MMHP model, to ensure that the rate in the active state is greater than in the
inactive state. For the degree corrected models we place InvGamma(3, 0.5) priors on γ
and ζ. Full details of the inference procedure to infer the latent states of the C-MMHP
model are given in Wu et al. (2019).

4.3. Synthetic results
We first wish to validate our proposed models using simulated data where we aim to
recover the known latent ranking vector. To compare the three proposed models, we
simulate 50 independent C-MMHPs with five nodes and parameters with values γ =
(0.01, .02, .03, .06, .07), ζ = (.075, .06, .05, .03, .02), η1 = 2.5, η2 = 0.6, η3 = 0.8, β = 1.5,
latent rank f = (0.1, 0.2, 0.4, 0.7, 0.9), and common λ1 = 0.15. By fitting the synthetic
data with our previous three models, we can obtain the inferred latent ranks as shown
in Figure 4 - (a). Inference using C-MMHP best recovers the true latent ranks, with the
C-HP and C-DCHP showing considerably more uncertainty in their estimates. Figure 4
- (b) shows an example of estimated intensity for one pair of individuals in one simulated
process, indicating that the C-HP and C-DCHP models cannot capture the true intensity
as well as the C-MMHP model, showing substantial underestimation of the intensity
during the active state.

To further explore this lack-of-fit in the C-HP and C-DCHP models, we again utilize
the time rescaling theorem (Brown et al., 2002) to diagnose model misspecification.

With the estimated intensity for each pair λ̂(i→j), we use a KS test to test whether the
rescaled-inter-event times are distributed as exponential random variables with rate 1.
The KS statistics of the process for each pair with respect to the three previous models
and true intensity are plotted in Figure 5-(a). C-HP and C-DCHP both demonstrate
a similar fit compared to C-MMHP, although there are several pairs where the C-HP
and C-DCHP models demonstrate a slightly larger lack of fit. We can also compare
the inferred ranking from each of these models and the comparison models discussed
previously with the known true ranking. We summarize this using the Spearman rank
correlation between the estimated ranking obtained from each method and the true
ranking, as shown in Fig 5-(b). We note that the C-MMHP model recovers the exact
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ranking in all but one simulation, with the C-HP and C-DCHP models also performing
well but showing more variability. As a structural method, the I&SI model recovers the
true ranking reasonably well.

4 −> 5

True C−HP

C−DCHPState 0/1 events
State change point
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Underestimation

(b)

Time
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Fig. 4. Simulation results. (a) Posterior inference of latent rank variable fi, i = 1, . . . , 5 by C-HP,
C-DCHP and C-MMHP. Each value is the posterior mean for fi inferred from 50 independent
simulations from the same underlying C-MMHP model. The black vertical line is the true value.
(b) Inferred intensity for one pair of individuals in one simulation using three models. Here the
red/blue shaded area underneath shows the magnitude of the error in the estimation of the
intensity.
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Fig. 5. (a) Shows K-S test statistics for point process model diagnosis with respect to three
models and ground truth. (b) Shows the Spearman rank correlation between the inferred ranking
from each of these models, along with existing methods, and the known true ranking.

4.4. Real data results

We next fit our models, C-HP, C-DCHP and C-MMHP to the ten mice cohorts studied
by Williamson et al. (2016), which consisted of placing each cohort of twelve male mice in
a large custom built vivarium. Intensive behavioral observations were conducted for one
to three hours per day during the dark cycle over twenty-one consecutive days. Trained
observers recorded all occurrences of the behaviors (including fighting, chasing, mount-
ing, subordinate posture and induced-flee). The details of each behavioral event are also
recorded, including the actor initializing the behavior, the recipient of the behavior, time
stamp and location.

Using various measurements in social hierarchy analysis and social network analysis,
Williamson et al. (2016) demonstrates that these mice cohorts form significantly linear
social dominance hierarchies. The work also examines the temporal changes in the mice
social hierarchy and shows that in most of the ten cohorts, the dominance hierarchies
emerge rapidly and become stable by the end of the second week. Although results
of the quantitative analysis are thoroughly discussed and the patterns in the tempo-
ral dynamics are summarized qualitatively, there are still observations in some cohorts
that disagree with the authors’ speculations. Additionally, there are questions that re-
main unanswered, e.g., what mechanism is behind the establishment of hierarchies, why
sometimes agnostic interactions occurred between pairs in an uncommon direction, how
inequitable the distribution of individuals’ dominance power is, etc. We also compare
the results from fitting the following models to this data: a dynamic social network in
latent space model, and a Markov-modulated Hawkes process with independent network
structure.
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Dynamic social network in latent space model (DSNL)(Sarkar and Moore, 2006). This
model is constructed for dynamic network data with binary links which is observed in
discrete time steps. The model associates each node in the network with a latent space
variable that can move in discrete time, and specifies that the move is Markovian. For

node i at discrete time d, the latent variable is denoted as f
(d)
i . We tailor this model to

our observed mice interaction data by changing the binary link assumption in the original
model to allow for aggregate counts by using a Poisson link instead of a logistic link.
We construct discrete time steps to be the ending time of each day in the observation
time window, i.e. t(d). Hence, for each pair (i, j), we have the count of their interactions

during day d, N i,j
d := N i,j(t(d))−N i,j(t(d−1)), where N i,j(t) is the counting process for

pair (i, j) evaluated at time t. The details of this model will be omitted here.

Markov-modulated Hawkes process with independent network structure (I-MMHP) (Wu
et al., 2019). In this model, we assume that the intensity function as in (4) allows for
different parameter values Θi,j across pairs. The independent structure of the parameters
in this model is less constrained than our C-MMHP model, where we consider network
structure between nodes to learn latent rankings.

Summary measures for evaluating model performance. Our real data analysis results
will be summarized from four different perspectives: inference for the latent ranks, pre-
diction performance, additional insights available through the C-MMHP model, and fi-
nally residual analysis of the point process models. We compare the results of the C-HP,
C-DCHP and C-MMHP models under the first three of these perspectives. Because the
nature of the three other comparison models - aggregate-ranking, DSNL and I-MMHP -
differs, they are fitted and compared from different perspectives. The aggregate-ranking
model (and also the I&SI method we discussed previously) estimates a static ranking and
will be evaluated in terms of inference for the latent ranks only. The I-MMHP is a point
process model and can be evaluated using the same point process methods as our latent
ranking point process models. However, the I-MMHP cannot be used to infer a latent
ranking. Finally, both the DSNL and I-MMHP models can perform prediction of events
(or event counts) and can serve as comparison models in the prediction performance
section.

4.4.1. Inference on latent rank
We fit the C-HP, C-DCHP, C-MMHP and aggregate-ranking models to our data of ten
cohorts separately. Figure 6-(a) shows the relationship between I&SI rank and posterior
draws of latent ranks using our three models and aggregate-ranking model in one such
cohort - cohort 5. Here a boxplot which is more diagonal from top left to bottom right
indicates that the ranking method is more consistent with the I&SI method. C-MMHP
agrees with I&SI well, is better able to distinguish between lower ranked mice than the
aggregate ranking method, and is better at identifying the top ranking mouse than C-
DCHP. It also appears to include a reasonable amount of uncertainty. To summarize
results across all of the 10 cohorts, we use the posterior mean to estimate the latent rank
and compute the Spearman rank correlation between the inferred latent rank and the
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I&SI rank. Figure 6-(b) shows the summary of the rank correlation for all ten cohorts,
where C-MMHP outperforms the other point process models consistently and gives a
similar result to the aggregate ranking method. It is not surprising that the aggregate-
ranking model performs well here as it uses the same data (the win/loss matrix) as the
I&SI method, ignoring the time component.
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Fig. 6. Real data fitting results. (a) Comparison of rank inference using different model with
I&SI rank for one cohort. (b) Summary of Spearman rank correlation between model inferred
ranks and I&SI rank for all cohorts.

4.4.2. Prediction

We can also use posterior predictive distributions to validate the models considered.
For each model, we split the data into two time periods: (1) the first 15 days of data,
Hi,j(t(15)), where t(d) is the ending observation time for the d-th day, which is used
to estimate the model and (2) a prediction window from day 15 to day t(d), for d =
16, ..., 21, the remaining observation period, which allows us to compare models across
different prediction horizons. For each prediction horizon t(d), we generate a predicted
point process separately over the time period t(15) to t(d), given each posterior draw of
parameters and the historical events in the first 15 days. Hence, the predicted counting
process N̂ i,j(t) is constructed by generating processes in each prediction period and
adding these to the true process in the model-fitting period. For each prediction horizon
and model, we generate 1000 posterior processes, corresponding to 1000 posterior draws
from the posterior distribution for the model parameters. Following Sarkar and Moore
(2006), we can also make predictions over these same time windows using the DSNL
model.

Two aspects of the predictions are evaluated, the accuracy of predictions for the
interaction counts and the prediction of the rankings.

For each point process model and for each different prediction horizon d = 16, ..., 21,
the number of total interactions for pair (i, j) during the prediction period can be esti-

mated by
¯̂
N (i,j)(t(d))−N (i,j)(t(15)), where

¯̂
N (i,j)(t(d)) is the average count of interactions

across 1000 posterior processes. We arrange the prediction counts in a matrix Â(d) such
that each (i, j) entry is the predicted number of interactions for pair (i, j) from the end
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of the 15th day until the dth day. To quantify the accuracy of these predicted counts, we
calculate the Frobenius norm of the difference between the estimated and real interaction
matrix A(d),

||Â(d) −A(d)||F .

The smaller the Frobenius norm, the closer the model’s predictions of the interaction
counts are to the observed data. Figure 7-(a) summarizes the result across all cohorts,
by taking the median predicted counts for each pair across each of 1000 posterior draws.
I-MMHP performs poorly since it does not take into account the dependence between
nodes due to the underlying network structure and thus struggles to make accurate
predictions across the whole network. The C-MMHP and C-HP models provide the best
predictions of interaction counts, with the smallest Frobenius norms across all prediction
horizons, with C-MMHP outperforming the C-HP model.

We also infer the predicted rank of individual i at prediction time t(d) by introducing
the out-degree intensity

λ̂i(t
(d)) =

∑
j

λ̂i,j(t(d)).

The Glicko score ranking system serves as a bench mark for us to compare to, as it is a
dynamic score. We compute the Spearman rank correlation of our inferred rank with the
Glicko score at the end of the prediction day. Figure 7-(b) summarizes the result for all
cohorts. The C-MMHP model predicts the ranks most accurately with rank correlation
close to 1, with the unconstrained I-MMHP model also performing well in this scenario.
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Fig. 7. Prediction of events and rank. (a) Frobenius norm of predicted error for all cohorts,
using the median predicted count for each model for each cohort on each day. (b) Summarize
the Spearman rank correlation of predicted rank for all cohorts, where each cohort is predicted
by the posterior mean of λ̂i(t(d)).

Our posterior predictive processes can even be used to forecast the Glicko scores over
future prediction windows, since we obtain the full event history from the generated
process. In contrast, the DSNL model can only provide day-level predictions, as we have
evaluated in previous discussions. Figure 8-(a) shows the prediction of Glicko scores
over days 19-21 when fitting the data in the first 18 days to the C-MMHP model. Our
prediction bands can forecast temporal trends of Glicko ratings in the real data and
provide an appropriate representation of the uncertainty in these predictions, which we
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illustrate in Figure 8-(a). While these prediction bands show some mean reversion not
seen in the true rankings, they correctly identify the highly ranked nodes and capture
the groups of rankings that seem to have formed for this cohort. Being able to predict
rank evolution over time is not possible using existing methods and this could be of use
in the experimental design of these studies to guide data collection, such as the ability
to isolate mice who would be expected to rank similarly in the original group.

4.4.3. State separation from the C-MMHP model
Additionally, since our C-MMHP model can separate interactions into active and inactive
states, such separation can serve as a prepossessing step for the data. We first fit the
C-MMHP model to the data for one cohort and classify the interactions into active
and inactive states according to the estimated latent Markov process. The two types
of interactions can then be fitted separately using other animal behavior models. Wu
et al. (2019) shows that the interactions in the active state more closely follow a linear
hierarchy, as compared to the set of all interactions or the set of inactive interactions; this
provides an explanation for the pair-flips phenomenon. During the active state, pairs are
engaging in aggressive interactions and actively trying to navigate the social hierarchy,
while in the inactive state, the interactions are more or less random and lack specifically
directed aggression as in the active state. As an example, we fit the DSNL model to
the set of overall events, active events and inactive events separately, and calculate the
Spearman rank correlation between the latent ranks for each day as estimated by the
DSNL model and the Glicko ratings at the end of each day. Figure 8-(b) shows these
rank correlations on each day for the three sets of interactions. This suggests that the
set of active interactions provides a more informative and more concise perspective of
how the linear hierarchy is established, and hence can improve the power of the DSNL
model in terms of the inference for the underlying rankings.

Fig. 8. Furthur results on C-MMHP. (a) Glicko score ranking prediction of last three days using
posterior draws, after fitting the first 18 days data in C-MMHP. True Glicko score ranking of all
the time period is shown with the solid colored line, while the posterior prediction mean is in
dashed line and one standard deviation is plotted in shaded color. (b) Rank correlation between
DSNL inferred latent rank and Glicko score ranking for each day in one cohort. Three colored
bar indicated the performance of three inferred rankings conducted on the overall interactions,
active and inactive respectively.
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4.4.4. Residual analysis
For point process models on a social network, model checking via residual analysis is
critical, aiding in identification of when and where the lack-of-fit in the model comes
from. Given a network point process model with inferred intensity λ̂i,j(t) for all directed
pairs (i, j), the Pearson residual can measure the fit of the estimated intensity to the
data and is calculated as

PRi,j(T ) =
∑
ti,jm

1√
λ̂i,j(ti,jm )

−
∫ T

0

√
λ̂i,j(s)ds.

This is a rescaled residual with mean 0 and variance T . In the network setting, the
Pearson residual is more informative compared to a raw residual, since different pairs
may have various activity levels (Wu et al., 2020). Figure 9-(a) displays the Pearson
residual for one cohort after fitting our three models and I-MMHP. The I-MMHP model
yields small negative residuals for all observed pairs, with unsurprisingly smaller residual
values than the more constrained comparison models. The C-HP model shows large
positive residuals for interactions originating from the highest ranked mouse which the
C-DCHP corrects for, although it results in almost all negative residuals, indicating
systematic overfitting in this case. In contrast the C-MMHP model shows small positive
and negative residuals, indicating little remaining structure. The C-MMHP model shows
the closest performance to the unconstrained I-MMHP model.

5. Discussion

In this paper, we propose a statistical model that can uncover latent social dominance
hierarchy among a group of animals from interaction event times. This model can
serve as an important tool in animal aggressive behavior analysis. To accomplish this,
we formalize a point process model for continuous-time directed social network data.
Three such models are developed: the cohort Hawkes process model (C-HP), the cohort
degree corrected Hawkes process model (C-DCHP) and the cohort Markov-modulated
Hawkes process model (C-MMHP). The Hawkes process incorporates the winner effect
and bursting patterns of aggressive behaviors, which are regularly observed in patterns
of aggressive interaction across animal species. The degree correction allows the model
to better capture individual level heterogeneity that is commonly observed in data of
this form. Finally, Markov-modulation accounts for pair-flip situations and allows for
asymmetry in interactions between pairs of animals, by separating these interactions
into active and inactive states. Performing inference for these models in the Bayesian
paradigm allows us to accurately quantify the uncertainty in the inferred rankings and
to better infer the ranking of nodes involved in few interactions, components that have
been lacking in existing models for animal ranking.

The simulation study demonstrates that inferences from these models are reasonable
and that the true ranking of nodes can be recovered. The mice cohort study serves as a
real data example and demonstrates that the C-MMHP model performs best overall, in
terms of latent rank inference, prediction of both events and rank over time and residual
diagnostics. This C-MMHP model can also be used to simulated future events, which
could aid in designing studies of this form. Similarly, the state separation available in
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Fig. 9. Comparison of Pearson residual matrix using different models for one cohort (the matrix
is reordered by I&SI rank). (b) Shows the corresponding matrix sturcture scores for both positive
and negative residuals for each of the 10 mice cohorts.

the C-MMHP model could lead to additional insights in conjuction with other models
for animal behavior.

In the future, our model can be extended to incorporate the loser effect and bystander
effect (Chase and Seitz, 2011) within the Hawkes process intensity function. The loser
effect means that an animal that has lost in earlier contests has an increased probability
of losing subsequent contests with other individuals. The bystander effect describes the
situation where an animal’s behavior might be influenced by observing an interaction or
contest between two other animals. The extent of each effect can be estimated through
a multivariate Hawkes process. The existence of such effects could be tested through
the limiting distribution in Chen et al. (2017). So et al. (2015) raises a question about
the causal relationship between aggressive behavior and gene expression. It is feasible to
integrate these elements in our model by modeling the baseline intensities as a function
of covariates that correspond to gene expression. Similarly, the model we have proposed
here is a special case of a latent space model. Latent space models are an important tool
in social network analysis and have been widely used in modeling both static network
(De Bacco et al., 2018; Hoff, 2005; McCormick and Zheng, 2015) and dynamic network
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(Sarkar and Moore, 2006; Sewell and Chen, 2015) data. Although latent space models
of discrete-time dynamic networks have been considered (Kim et al., 2018), there has
been little work in the context of continuous time dynamic networks, and this remains
an area for future research.
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